本文共 6910 字,大约阅读时间需要 23 分钟。
对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了。而并发问题是绝大部分的程序员头疼的问题,但话又说回来了,既然逃避不掉,那我们就要想想应对措施,今天我们就一起讨论一下常见的并发和同步吧。
首先为了更好的理解并发和同步,我们需要首先明白两个重要的概念:同步和异步对于Java程序员来说,Synchronized最为熟悉了,如果它作用于一个类的话,那么就是一个线程访问类的方法时,其他线程就会阻塞,相反,如果没有这个关键字来修饰的话,不同线程就可以在同一时间访问同一个方法,这就是异步。
不可重复读
在第一个事务读取数据后,第二个事务对数据进行了修改,导致第一个事务结束前再访问这个数据的时候,会发现两次读取到的数据是不一样的,因此称为不可重复读。悲观锁
悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度。因此,在这个数据处理过程中,将数据处于锁定状态。 悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。 一个典型的倚赖数据库的悲观锁调用:select * from account where name=”Erica” for update
这条 sql 语句锁定了 account 表中所有符合检索条件( name=”Erica” )的记录。
本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。 Hibernate 的悲观锁,也是基于数据库的锁机制实现。 下面的代码实现了对查询记录的加锁:1 2 3 4 | String hqlStr ="from TUser as user where user.name='Erica'"; Query query = session.createQuery(hqlStr); query.setLockMode("user",LockMode.UPGRADE); // 加锁 List userList = query.list();// 执行查询,获取数据 |
观察运行期 Hibernate 生成的 SQL 语句:
1 | select tuser0_.id as id, tuser0_.name as name, tuser0_.group_id as group_id, tuser0_.user_type as user_type, tuser0_.sex as sex from t_user tuser0_ where (tuser0_.name='Erica' ) for update |
这里 Hibernate 通过使用数据库的 for update 子句实现了悲观锁机制。
Hibernate 的加锁模式有:1 2 3 4 5 6 7 8 9 10 11 12 | LockMode.NONE : 无锁机制。 LockMode.WRITE : Hibernate 在 Insert 和 Update 记录的时候会自动获取 LockMode.READ : Hibernate 在读取记录的时候会自动获取。 以上这三种锁机制一般由 Hibernate 内部使用,如 Hibernate 为了保证 Update过程中对象不会被外界修改,会在 save 方法实现中自动为目标对象加上 WRITE 锁。 LockMode.UPGRADE :利用数据库的 for update 子句加锁。 LockMode.UPGRADE_NOWAIT : Oracle 的特定实现,利用 Oracle 的 for update nowait 子句实现加锁。 上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现: Criteria.setLockMode Query.setLockMode Session.lock |
注意,只有在查询开始之前(也就是 Hiberate 生成 SQL 之前)设定加锁,才会真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含 for update子句的 Select SQL 加载进来,所谓数据库加锁也就无从谈起。
为了更好的理解select… for update的锁表的过程,本人将要以mysql为例,进行相应的讲解
开启两个测试窗口,其中一个窗口A执行命令:1 2 3 4 5 6 7 8 9 10 11 | mysql> begin; Query OK, 0 rows affected (0.00 sec) mysql> select * from empinfo for update; +--------+----------+------+---------+ | Fempno | Fempname | Fage | Fsalary | +--------+----------+------+---------+ | 1233 | sdfs | NULL | NULL | | 324234 | sdf | 38 | 12121 | +--------+----------+------+---------+ 2 rows in set (0.00 sec) |
这个时候打开窗口B执行更新或插入操作:
1 | mysql> update empinfo set Fage=12 where Fempno=1233; |
这个时候窗口B的更新或插入操作不会执行,会一直在等待,直到A窗口的事务提交了:
1 2 | mysql> commit; Query OK, 0 rows affected (0.00 sec) |
B窗口的更新才开始执行。
那么for update到底锁定表还是行呢?由于InnoDB预设是Row-Level Lock,所以只有「明确」的指定主键,MySQL才会执行Row lock (只锁住被选取的资料例) ,否则MySQL将会执行Table Lock (将整个资料表单给锁住)。
例1: (明确指定主键,并且有此笔资料,row lock)1 2 3 | SELECT * FROM products WHERE id='3' FOR UPDATE; SELECT * FROM products WHERE id='3' and type=1 FOR UPDATE; |
例2: (明确指定主键,若查无此笔资料,无lock)
SELECT * FROM products WHERE id='-1' FOR UPDATE;
例3: (无主键,table lock)
SELECT * FROM products WHERE name='Mouse' FOR UPDATE;
例4: (主键不明确,table lock)
SELECT * FROM products WHERE id<>'3' FOR UPDATE;
例5: (主键不明确,table lock)
SELECT * FROM products WHERE id LIKE '3' FOR UPDATE;
注1: FOR UPDATE仅适用于InnoDB,且必须在交易区块(BEGIN/COMMIT)中才能生效。
注2: 要测试锁定的状况,可以利用MySQL的Command Mode ,开二个视窗来做测试。在MySql 5.0中测试确实是这样的 另外:MyAsim 只支持表级锁,InnerDB支持行级锁 添加了(行级锁/表级锁)锁的数据不能被其它事务再锁定,也不被其它事务修改(修改、删除) 。是表级锁时,不管是否查询到记录,都会锁定表。 到这里,悲观锁机制你应该了解一些了吧~乐观锁
相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依 靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库 性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进 行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几 百上千个并发,这样的情况将导致怎样的后果。乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本 Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来 实现。 读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提 交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据 版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。 假如数据库中账户余额为100,version为1,操作员A读出余额,并修改为50,而在A操作的同时操作员B也读出了账户余额100,并修改为80,A完成了操作录入系统,version从1加上1变为2,余额修改为50,操作员B也提交了记录,version也变为2,余额则是80,但是此时数据库发现,B提交的version为2,当前版本也是2,不满足 “ 提交版本必须大于记 录当前版本才能执行更新 “ 的乐观锁策略。因此,操作员 B 的提交被驳回。 这样,就避免了操作员 B 用基于version=1 的旧数据修改的结果覆盖操作 员 A 的操作结果的可能。 从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A和操作员 B 操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系 统整体性能表现。 需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局 限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户 余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在 系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如 将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途 径,而不是将数据库表直接对外公开)。 Hibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外部系统对数 据库的更新操作,利用 Hibernate 提供的透明化乐观锁实现,将大大提升我们的 生产力。Hibernate使用乐观锁我只说一下注解的方式:
在Entity中加入以下代码1 2 3 4 5 6 7 8 9 10 | private int version; @Version @Column(name = "version",length = 11) public int getVersion() { return version; } public void setVersion(int version) { this.version = version; } |
这样就可以轻松实现hibernate乐观锁方式。
案例一:案例二、股票交易系统、银行系统,大数据量你是如何考虑的
首先,股票交易系统的行情表,每几秒钟就有一个行情记录产生,一天下来就有(假定行情3秒一个) 股票数量×20×60*6 条记录,一月下来这个表记录数量多大? oracle中一张表的记录数超过100w后 查询性能就很差了,如何保证系统性能? 再比如,中国移动有上亿的用户量,表如何设计?把所有用于存在于一个表么? 所以,大数量的系统,必须考虑表拆分-(表名字不一样,但是结构完全一样),通用的几种方式:(视情况而定) 1)按业务分,比如 手机号的表,我们可以考虑 130开头的作为一个表,131开头的另外一张表 以此类推 2)利用oracle的表拆分机制做分表 3)如果是交易系统,我们可以考虑按时间轴拆分,当日数据一个表,历史数据弄到其它表。这里历史数据的报表和查询不会影响当日交易。 此外,我们还得考虑缓存 这里的缓存,指的不仅仅是hibernate,hibernate本身提供了一级二级缓存。这里的缓存独立于应用,依然是内存的读取,假如我们能减少数据库频繁的访问,那对系统肯定大大有利的。比如一个电子商务系统的商品搜索,如果某个关键字的商品经常被搜,那就可以考虑这部分商品列表存放到缓存(内存中去),这样不用每次访问数据库,性能大大增加。简单的缓存大家可以理解为自己做一个hashmap,把常访问的数据做一个key,value是第一次从数据库搜索出来的值,下次访问就可以从map里读取,而不读数据库;专业些的目前有独立的缓存框架比如memcached 等,可独立部署成一个缓存服务器。最后复制一些在高并发下面需要常常需要处理的内容:
尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。 用jprofiler等工具找出性能瓶颈,减少额外的开销。 优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)。 优化数据库结构,多做索引,提高查询效率。 统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。 能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。 解决以上问题后,使用服务器集群来解决单台的瓶颈问题。转载地址:http://npvia.baihongyu.com/